

PAQ-003-1162001

Seat No.

M. Sc. (Sem. II) Examination

August / September - 2020

Mathematics: CMT-2001

(Algebra -II)

Faculty Code: 003

Subject Code: 1162001

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

(2) Each question carries 14 marks.

1 Answer Any **Seven** short questions:

 $7 \times 2 = 14$

- (i) For a ring R, define R-module and give an example of an R-module.
- (ii) Let M be an R-module. In standard notation, prove that $(-a)m = a(-m), \forall a \in R \& \forall m \in M.$
- (iii) Let $f(x) = x^3 + 4x^2 11x + 13$. Prove that f(x+1) is an irreducible polynomial over Z[x].
- (iv) Define finite field extension and give an example of finite extension.
- (v) Write down all the roots of the polynomial $x^4 2 \in Q[x]$.
- (vi) Write down the minimal polynomial of the number $\sqrt{2} + \sqrt{3}$ over Q.
- (vii) Write down at least two irreducible polynomials of the ring $Z_2[x]$ whose degree is precisely two.
- (viii) Give definition of an algebraic extension. Also give an example of an algebraic extension.
- (ix) For a field extension $E|_F$, when we say E is finitely generated field over F? Also give definition of simple extension.

2 Attempt Any Two:

 $2 \times 7 = 14$

- (a) Let ${}^E|_F$ and ${}^K|_E$ both are finite extensions. Prove that ${}^K|_F$ is also a finite field extension.
- (b) Let $p(x) \in F[x]$ be an irreducible polynomial and degree of p(x) = n. Let. $E \mid_F$ be an extension such that $\alpha \in E$ and α is a root of p(x). Prove that $F[\alpha] = F(\alpha), [F(\alpha):F] = n$ and $\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$ is a basis of $F(\alpha)$ over F.
- (c) State and Prove Eisenstein Criterion.

3 Attempt Any One:

 $1 \times 14 = 14$

- (a) Let ${}^E|_F$ and ${}^K|_E$ both are finite separable extensions. Prove that ${}^K|_F$ is also a finite separable extension.
- (b) (1) Let F be finite field. Prove that $F \{0\}$ is a cyclic group under multiplication.
 - (2) Let F be a field and $F \{0\}$ is a cyclic group under multiplication. Prove that F is a finite field.
- (c) Let $^{E}|_{F}$ be a finite extension. Prove that following statements are equivalent:
 - (1) $E = F(\infty)$, for some $\infty \in E$.
 - (2) There are only a finite number of sub fields of E containing F, as a sub field.

4 Attempt Any two:

 $2 \times 7 = 14$

(a) Let $f(x) \in F[x]$ be an irreducible polynomial. Prove that α is a multiple root of f(x) if and only if f'(x) = 0 (All the coefficients of f'(x) are multiple of char F).

- (b) Let p be a prime. Prove that $f(x) = x^{p-1} + x^{p-2} + ... + x + 1 \in \mathbb{Z}[x]$ is an irreducible polynomial over $\mathbb{Q}[x]$.
- (c) Let $f: M \to N$ be an R-homomorphism of R-modules. Prove that Ker f and f(M) are R-sub modules of M and N respectively.

5 Attempt Any Two:

 $2 \times 7 = 14$

- (1) Let R be a ring and M be an R-module. Prove that M is a cyclic R-Module if and only if $M \cong \frac{R}{I}$, for some ideal I of R.
- (2) Let $f:M\to N$ be an onto R-homomorphism of R-modules. Prove that $\frac{M}{Ker\ f}\cong N.$
- (3) Let A, B, be R-sub modules of two R-modules M and N respectively. In standard notation, prove that $\frac{M \times N}{A \times B} \cong \frac{M}{A} \times \frac{N}{B}.$
- (4) Let K be a field and char K = p > 0. Prove that K is a perfect field if and only if $K = K^p$, where $K^p = \left\{\alpha^p / \alpha \in K\right\}$.